

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIEN	NCE
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR. MARIUS MUTORWA
MODERATOR:	DR. RENATE HANS

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black in and sketches
	must be done in pencil
5.	No book, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

NMR and IR Spectral Data, pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 14 PAGES (Including this front page)

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 For the functional group(s) on the following molecule, what characteristic IR absorption(s) would be expected (ignoring C-H absorptions)?

- A. Peaks around 1700 and 1650 cm⁻¹
- B. A strong broad peak over 3600 to 2500 and around 1710 cm⁻¹
- C. Peaks around 1650 and 3300 cm⁻¹
- D. Peaks around 3300 and 1710 cm⁻¹
- 1.2 For the following reaction sequence (it is not necessary to understand the chemistry) what significant change(s) would be expected by IR (ignoring C-H absorptions)?

- A. A peak around 1710 cm⁻¹ would disappear and a new peak around 3300-3500 cm⁻¹ would appear.
- B. A peak around 1710 cm⁻¹ would appear and a new peak around 1650 cm⁻¹ would disappear.
- C. A peak around 2150 cm⁻¹ would disappear and a new peak around 3300-3500 cm⁻¹ would appear.
- D. No change would be observed.
- 1.3 Which of the following is not a prominent peak in the mass spectrum of 2-methyl-2-pentanol?
 - A. M-15
 - B. M-18
 - C. M-29
 - D. M-16

1.4 Which molecular formula is consistent with the following mass spectrum data?

 $(M+1)^{+\bullet}$ at m/z=73, relative height=3.3%

- A. C₄H₁₀O
- B. C₄H₉N
- C. C₅H₁₂
- D. C₄H₈O

1.5 How many signals would you expect to find in the $^1\mathrm{H}$ NMR spectrum of the following compound?

- A. 5
- B. 6
- C. 7
- D. 8

1.6 Which of the following is a correct prediction of the chemical shifts for the signals in the 1 H NMR spectrum for the following compound?

- A. I=0.9 ppm, II=1.7 ppm, III=3.9 ppm, IV=2.4 ppm
- B. I=0.9 ppm, II=1.2 ppm, III=3.7 ppm, IV=1.9 ppm
- C. I=0.9 ppm, II=1.7 ppm, III=3.4 ppm, IV=2.4 ppm
- D. I=0.9 ppm, II=1.7 ppm, III=3.4 ppm, IV=1.9 ppm

1.7 Determine the number of singlet signals expected to be observed in the 1H NMR spectrum of the following compound.

- A. 2
- B. 3
- C. 4
- D. 5

1.8 Provide the name of the compound below.

- A. (3R,4E)-3-t-butyl-4-methyl-1,4-hexadiene
- B. (3S,4E)-3-t-butyl-4-methyl-1,4-hexadiene
- C. (3S,4Z)-3-t-butyl-4-methyl-1,4-hexadiene
- D. (3R,4Z)-3-t-butyl-4-methyl-1,4-hexadiene
- 1.9 How many products are expected to be formed in the electrophilic addition reaction below?

- A. 2
- B. 3
- C. 4
- D. 5
- 1.10 Which one of the following dienophiles is least reactive in the Diels-Alder reaction?

$$H_3CO$$
 I
 II
 III
 IV
 V

- A. I
- B. II
- C. III
- D. IV
- E. V
- 1.11 What is the IUPAC name for the following compound?

- A. 6-ethyl-3-nitrobenzoic acid
- B. 1-ethyl-4-nitrobenzoic acid
- C. 2-ethyl-5-nitrobenzoic acid
- D. 2-ethyl-5-nitrobenzaldehyde
- E. 4-nitro-3-carboxyethylbenzene
- 1.12 Which one of the following compound is nonaromatic?

- A. I
- B. II
- C. III
- D. V
- 1.13 Which of the following compounds is the most acidic?

1.14 Arrange the compounds in order of increasing reactivity towards electrophilic substitution?

- A. II, I, IV, III
- B. I, III, IV, II
- C. III, I, IV, II
- D. IV, III, II, I

1.15 Which is the best reaction sequence for preparing the following compound X from benzene?

- A. A
- B. B
- C. C
- D. D
- 1.16 Which of the following statements is (are) true about electrophilic aromatic substitution?
 - A. The methoxy group is an ortho, para activator because of a strong electron donating effect
 - B. The methoxy group is an ortho, para director because of a strong electron withdrawing inductive effect
 - C. The methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect
 - D. Statement A (The methoxy group is an ortho, para activator because of a strong electron donating effect) and Statement C (the methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect) are the only true statements.
- 1.17 Both LiAlH4 and NaBH4 are reducing agents. Which statement about these reagents is true?
 - A. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the Al-H bond, so LiAlH₄ is the stronger reducing agent.
 - B. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is greater than the polarity of the Al-H bond, so LiAlH₄ is the weaker reducing agent.
 - C. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH₄ is the stronger reducing agent.
 - D. Both reagents contain polar metal-hydrogen bonds. The polarity of the B-H bond is less than the polarity of the Al-H bond, so LiAlH₄ is the weaker reducing agent.
- 1.18 What is the IUPAC name for the following compound?

- A. 5-sec-butyl-4,4-dimethyl-7-decanol
- B. 6-sec-butyl-7,7-dimethyl-4-decanol
- C. 4,4-dimethyl-5-sec-butyl-7-decanol
- D. 7,7-dimethyl-6-sec-butyl-4-decanol
- 1.19 Which one of the following compounds gives 5-methyl-3-heptanol with LiAlH $_4$ followed by water?

- A. I
- B. II
- C. III
- D. IV
- E. V
- 1.20 What is the IUPAC name for the compound below?

- A. 4-oxo-5-phenyl-2-hexanol
- B. 2-hydroxypropyl-1-phenylethyl ketone
- C. 5-hydroxy-2-phenyl-3-hexanone
- D. 2-hydroxy-5-phenyl-4-hexanone
- 1.21 Predict the product for the following reaction.

- A. I
- B. II
- C. III
- D. IV
- **1.22** Provide the structure of the product, when cyclohexanecarbaldehyde reacts with excess 2-propanol in presence of sulfuric acid.

- A. I
- B. II
- C. III
- D. IV
- 1.23 What is the IUPAC name of the following compound?

- A. 2-methylpentanoic acid
- B. 3-methylpentanoic acid
- C. 2-methylhexanoic acid
- D. 3-methylhexanoic acid

1.24 Rank the following acids in decreasing (strongest to weakest) order of acidity.

- A. ||>|V>|||>|
- B. III>IV>II>I
- C. |>|||>|V>||
- D. II>I>IV>III

1.25 Provide the reagents necessary to carry out the following conversion.

- A. 1. Mg/ether; 2. CO_2 and 3. H_3O^+
- B. 1. NaOH; 2. KMnO₄/NaOH/H₂O and 3. H_3O^+
- C. 1. NaCN and 2.H₃O⁺, heat
- D. A and C above

END OF SECTION A

[50]

QUESTION 2

[10]

What is (are) the product(s) of the following reactions?

Note: Each question carries 2 marks.

a.

$$\begin{array}{c}
0 \\
\hline
1. \text{ excess LiAlH}_4 \\
\hline
2. \text{H}_2\text{O}
\end{array}$$

b.

c.

$$\begin{array}{c|c} & & & \\ & & & \\$$

d.

e.

QUESTION 3 [14]

Identify the lettered intermediates (A-G) in the following reaction sequence.

Note: 2 marks for each correct intermediate

QUESTION 4 [12]

Glutaraldehyde is a germicidal agent that is sometimes used to sterilize medical equipment. In mildly acidic conditions, glutaraldehyde exists in a cyclic form as shown below. Draw a stepwise detailed reaction mechanism for the reaction below.

QUESTION 5 [14]

What is the structure of the compound with molecular formula $C_9H_{10}O_3$, IR absorptions at **3250 cm⁻¹**, **1680 cm⁻¹** and **1280 cm⁻¹** and has the following ¹H NMR data?

Signal #	Shift (ppm)	Multiplicity	Proton Ratio
1	1.1	triplet	3
2	4.0	quartet	2
3	6.9	doublet	2
4	8.0	doublet	2
5	10.2	singlet	1

THE END

GOODLUCK

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
эр ³ —С—Н	0.9–2	C=C sp ²	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7	Н	6.5–8
Z = C - H Z = C, O, N	1.5–2.5	R H	9–10
—C≡C-H	~2.5	P OH	10–12
Sp^3 $Z = N, O, X$	2.5–4	RO-H or R-N-H	1–5

Important IR Absorptions

Bond type	Approximate v̄ (cm⁻¹)	Intensity
O-H	3600-3200	strong, broad
N – H	3500-3200	medium
C-H	~3000	
 Csp3 - F 	H 3000–2850	strong
 C_{sp}₂−F 	H 3150–3000	medium
 C_{sp}-H 	3300	medium
C≡C	2250	medium
C≡N	2250	medium
C=0	1800-1650 (often ~1700)	strong
C=C	1650	medium
	1600, 1500	medium

helium 2 4 E	4.0026 neon 10	S	20.180 argon	18	7	39.948	krypton 36	7	83.80	xenon 54	Xe	131.29	radon 86	S S	[222]			
	fluorine 9	LL	18.998 chlorine	17	J	35.453	bromine 35	ä	79,904	iodine 53		126.90	astatine 85	At	[210]			
	oxygen 8	0	15.999 Sulfur	16	ഗ	32.065	selenium 34	S	78.96	tellurium 52	L _O	127.60	polonium 84	0	[209]			
	nitrogen 7	Z	14.007 phosphorus	12	۵_	30.974	arsenic 33	Ass	74.922	antimony 51	S	121.76	bismuth 83	00	208.98			
	carbon 6	ပ	12.011 silicon	14	ഗ	28.086	germanium 32	9	72.61	≣ 65	S	118.71	lead 82	0	207.2	ununquadium 114	200	[289]
	boron 5	00	10.811 aluminium	13	<	26.982	gallium 31	r C	69.723	indium 49		114.82	thallium 81		204.38			
	1			1			zinc 30	Z	62.39	cadmium 48	0	112.41	mercury 80	O	200.59	ununbium 112	200	[277]
							copper 29	5	63,546	silver 47	Ao	107.87	90kg 79	Z	196.97	unununium 111	D D	[272]
							nickel 28	2	58.693	palladium 46	0	106.42	platinum 78	ā	195.08	ununnilium 110	250	[271]
							cobalt 27	ပ္ပ	58.933	rhodium 45		102.91	iridium 77		192.22	meltnerium 109		[268]
							iron 26	W	55.845	ruthenium 44	2	101.07	osmium 76	00	190.23	hassium 108	S	[269]
							manganese 25		54.938	technetium 43	<u>ပ</u>	[86]	rhenium 75	9	186.21	bohrium 107	<u>_</u>	[264]
							chromium 24	ប៉	51.996	molybdenum 42	2	95.94	tungsten 74	5	183.84	seaborgium 106	S	[266]
							vanadium 23	>	50.942	niobium 41	2	92.906	tantalum 73	<u>_</u>	180.95	dubnium 105	0	[262]
							titanium 22		47.867	zirconium 40	Z	91.224	hafnium 72	Ï	178.49	rutherfordium 104	Ż	[261]
						-	scandium 21	ပ	44.956	yttrium 39	>	88.906	lutetium 71	3	174.97	103		[262]
						_							57-70	*		89-102	*	
	beryllium 4	B	9.0122 magnesium	12	<u>S</u>	24.305	calcium 20	ပ္မ	40.078	strontium 38	ঠ	87.62	barium 56	Ba	137.33		Ra	[226]
hydrogen 1	ithium 3		6.941 sodium	- d	2	22.990	19	Y	39.098	rubidium 37	20	85.468	caesium 55	ග	132.91	rancium 87	<u> </u>	[223]

5	mnuantue	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	vtterbium
* anthanide series	22	28	29	09	9	62	63	3	65	99	29	89	69	2
	g	ပ္	۵	S	E	S	<u>Б</u>	00	0	2	O I	Ш	E	2
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	minin	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	88	90	91	92	93	94	92	96	97	86	99	100	101	102
	AC	5	<u>م</u>	>	2	2	AM	E C	<u>~</u>	Š	S	E	S	2
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]